Silhouette of space shuttle Endeavour over Earth's colorful horizon (Copyright protected) A SpaceX Falcon 9 rocket illuminates the Southern California sky above the Pacific Ocean (Copyright protected) MATH (Creative-Common)

Publication

  1. Shim, J., Song, I.-S., Jee, G., Kwak, Y.-S., Tsagouri, I., Goncharenko, L., et al. (2023). Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event-II. Space Weather, 21, e2022SW003388. https://doi.org/10.1029/2022SW003388
  2. Song, B.-G., Chun, H.-Y., Song, I.-S., Lee, C., Kim, J.-H., and Jee, G. (2022). Long-term characteristics of the meteor radar winds observed at King Sejong Station, Antarctica, Journal of Geophysical Research: Atmospheres, 128, e2022JD037190, https://doi.org/10.1029/2022JD037190
  3. Lee, J., Claussen, M., Kim, J., Hong, J.-W., Song, I.-S., and Hong, J. (2022). Effect of nitrogen limitation and soil biophysics on Holocene greening of the Sahara, Climate Past, 18, 313-326, https://doi.org/10.5194/cp-18-313-2022
  4. Kam, H., Song, I.-S., Kim, J.-H., Kim, Y. H., Song, B.-G., Nakamura, T., et al. (2021). Mesospheric short-period gravity waves in the Antarctic Peninsula observed in all-sky airglow images and their possible source locations. Journal of Geophysical Research: Atmospheres, 126, e2021JD035842. https://doi.org/10.1029/2021JD035842
  5. Lee, W., Song, I.-S., Kim, J.-H., Kim, Y. H., Jeong, S.-H., Eswaraiah, S., & Murphy, D. J. (2021). The observation and SD-WACCM simulation of planetary wave activities in the upper atmosphere during the 2019 Southern Hemisphere sudden stratospheric warming. Journal of Geophysical Research: Space Physics, 126, e2021JA029094. https://doi.org/10.1029/2021JA029094
  6. Song, B.-G., Song, I.-S., Chun, H.-Y., & Lee, C. (2021). Activities of small-scale gravity waves in the upper mesosphere observed from meteor radar at King Sejong Station, Antarctica (62.22°S, 58.78°W) and their potential sources in the lower atmosphere. Journal of Geophysical Research: Atmospheres, 126, e2021JD034528. https://doi.org/10.1029/2021JD034528
  7. Lee, J.-H., Jee, G., Kwak, Y.-S., Hwang, H., Seppala, A., Song, I.-S., Turunen, E., & Lee, D.-Y. (2021). Polar middle atmospheric responses to medium energy electron (MEE) using numerical model simulations. Atmosphere, 12, 133, http://doi.org/10.3390/atmos12020133
  8. Song, B.-G., Chun, H.-Y., & Song, I.-S. (2020). Role of gravity waves in a vortex-split sudden stratospheric warming in January 2009. Journal of the Atmospheric Sciences, 77(10), 3321–3342. https://doi.org/10.1175/JAS-D-20-0039.1
  9. Song, I.-S., Lee, C., Chun, H.-Y., Kim, J.-H., Jee, G., Song, B.-G., & Bacmeister, J. T. (2020): Propagation of gravity waves and its effects on pseudomomentum flux in a sudden stratospheric warming event. Atmospheric Chemistry and Physics, 20(12), 7617–7644. https://doi.org/10.5194/acp-20-7617-2020
  10. Yoo, J.-H., Song, I.-S., Chun, H.-Y., & Song, B.-G. (2020). Inertia-gravity waves revealed in radiosonde data at Jang Bogo Station, Antarctica (74°37'S, 164°13'E): 2. Potential sources and their relation to inertia-gravity waves. Journal of Geophysical Research: Atmospheres, 125(7), e2019JD032260. https://doi.org/10.1029/2019JD032260
  11. Kim, Y.-H., Kiladis, G. N., Albers, J. R., Dias, J., Fujiwara, M., Anstey, J. A., Song, I.-S., Wright, C. J., Kawatani, Y., Lott, F., & Yoo, C. (2019). Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses. Atmospheric Chemistry and Physics, 19(15), 10027–10050. https://doi.org/10.5194/acp-19-10027-2019
  12. Yoo, J.-H., Choi, T., Chun, H.-Y., Kim, Y.-H., Song, I.-S., & Song, B.-G. (2018). Inertia-gravity waves revealed in radiosonde data at Jang Bogo Station, Antarctica (74°37'S, 164°13'E): 1. Characteristics, energy and momentum Flux. Journal of Geophysical Research: Atmospheres, 123(23), 13305–13331. https://doi.org/10.1029/2018JD029164
  13. Lee, J.-H., Jee, G., Kwak, Y.-S., Hong, S.-B., Hwang, H.~J., Song, I.-S., Lee, Y.-S., Turunen, E., & Lee, D.-Y. (2018). Responses of nitrogen oxide to high-speed solar wind stream in the polar middle atmosphere. Journal of Geophysical Research: Space Physics, 123(11), 9788–9801. https://doi.org/10.1029/2017JA025161
  14. Lee, C., Kim, J.-H., Jee, G., & Song, I.-S. (2018). Meteor echo height ceiling effect and the mesospheric temperature estimation from meteor radar observation. Annales Geophysicae, 36(5), 1267–1274. https://doi.org/10.5194/angeo-36-1267-2018
  15. Song, I.-S., Chun, H.-Y., Jee, G., Kim, S.-Y., Kim, J., Kim, Y.-H., & Taylor, M. A. (2018). Dynamic initialization for whole-atmospheric global modeling. Journal of Advances in Modeling Earth Systems, 10(9), 2096–2120. https://doi.org/10.1029/2017MS001213
  16. Song, I.-S., Byun, U.-Y., Hong, J., & Park, S.-H. (2018). Domain-size and top-height dependence in regional predictions for the Northeast Asia in spring. Atmospheric Science Letters, 19(1), e799. https://doi.org/10.1002/asl.799
  17. Lee, C., Jee, G., Wu, Q., Shim, J. S., Murphy, D., Song, I.-S., Kwon, H.-J., Kim, J.-H., & Kim, Y. H. (2017). Polar thermospheric winds and temperature observed by Fabry-Perot interferometer at Jang Bogo Station, Antarctica. Journal of Geophysical Research: Space Physics, 122(9), 9685–9695. https://doi.org/10.1002/2017JA024408
  18. Song, I.-S., Lee, C., Kim, J.-H., Jee, G., Kim, Y.-H., Choi, H.-J., Chun, H.-Y., & Kim, Y. H. (2017). Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region. Journal of Geophysical Research: Space Physics, 122(4), 4777–4800. https://doi.org/10.1002/2016JA022978
  19. Kam, H., Jee, G., Kim, Y., Ham, Y.-B., & Song, I.-S. (2017). Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W). Journal of Atmospheric and Solar-Terrestrial Physics, 155, 86–94, https://doi.org/10.1016/j.jastp.2017.02.006
  20. Lee, C., Kim, J.-H., Jee, G., Lee, W., Song, I.-S., & Kim, Y. H. (2016). New method of estimating temperatures near the mesopause region using meteor radar observations. Geophysical Research Letters, 43(20), 10580–10585. https://doi.org/10.1002/2016GL071082
  21. Kim, Y.-H., Chun, H.-Y., Park, S.-H., Song, I.-S., & Choi, H.-J. (2016). Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmospheric Chemistry and Physics, 16(8), 4799–4815. https://doi.org/10.5194/acp-16-4799-2016
  22. Hurwitz, M. M., Oman, L. D., Newman, P. A., & Song, I.-S. (2013). Net influence of an internally generated quasi-biennial oscillation on modelled stratospheric climate and chemistry. Atmospheric Chemistry and Physics, 13(5), 12187–12197. https://doi.org/10.5194/acp-13-12187-2013
  23. Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., Eichmann, A., & Chang, Y. (2012). The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2012-104606, 28. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/ 20120011790.pdf
  24. Garfinkel, C. I., Molod, A., Oman, L. D., & Song, I.-S. (2011). Improvement of the GEOS-5 AGCM upon updating the air-sea roughness parameterization. Geophysical Research Letters, 38(18), L18702, https://doi.org/10.1029/2011GL048802
  25. Hurwitz, M. M., Song, I.-S., Oman, L. D., Newman, P. A., Molod, A. M., Frith, S. M., & Nielsen, J. E. (2011). Response of the Antarctic stratosphere to warm pool El Nino events in the GEOS CCM. Atmospheric Chemistry and Physics, 11(18), 9659–9669. https://doi.org/10.5194/acp-11-9659-2011
  26. Jeon, J.-H., Hong, S.-Y., Chun, H.-Y., & Song, I.-S. (2010). Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pacific Journal of Atmospheric Sciences, 46(1), 1–10. https://10.1007/s13143-010-0001-8
  27. Choi, H.-J., Chun, H.-Y., & Song, I.-S. (2009). Gravity wave temperature variance calculated using the ray-based spectral parameterization of convective gravity waves and its comparison with Microwave Limb Sounder observations. Journal of Geophysical Research: Atmospheres, 114(D8), D08111. https://doi.org/10.1029/2008JD011330
  28. Song, I.-S., & Chun, H.-Y. (2008). A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. Journal of the Atmospheric Sciences, 65(4), 1204–1224. https://doi.org/10.1175/2007JAS2369.1
  29. Chun, H.-Y., Choi, H.-J., & Song, I.-S. (2008). Effects of nonlinearity of convectively forced internal gravity waves: Application to a gravity wave drag parameterization. Journal of the Atmospheric Sciences, 65(2), 557–575. https://doi.org/10.1175/2007JAS2255.1
  30. Choi, H.-J., Chun, H.-Y., & Song, I.-S. (2007). Characteristics and momentum flux spectrum of convectively forced internal gravity waves in ensemble numerical simulations. Journal of the Atmospheric Sciences, 64(10), 3723–3734. https://doi.org/10.1175/JAS4037.1
  31. Song, I.-S., Chun, H.-Y., Garcia, R. R., & Boville, B. A. (2007). Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part II: Impacts in a GCM (WACCM). Journal of the Atmospheric Sciences, 64(7), 2286–2308. https://doi.org/10.1175/JAS3954.1
  32. Chun, H.-Y., Goh, J.-S., Song, I.-S., & Ricciardulli, L. (2007). Latitudinal variation of convective source and propagation of condition of inertio-gravity waves in the tropics. Journal of the Atmospheric Sciences, 64(5), 1603–1618. https://doi.org/10.1175/JAS3891.1
  33. Chun, H.-Y., Song, I.-S., & Baik, J.-J. (2006). Seasonal variations of gravity waves revealed in rawinsonde data at Pohang, Korea. Meteorology and Atmospheric Physics, 93(3-4), 255–273. https://doi.org/10.1007/s00703-005-0164-5
  34. Chun, H.-Y., Song, I.-S., & Horinouchi, T. (2005). Momentum flux spectrum of convectively forced gravity waves: Can diabatic forcing be a proxy for convective forcing? Journal of the Atmospheric Sciences, 62(11), 4113–4120. https://doi.org/10.1175/JAS3610.1
  35. Song, I.-S., & Chun, H.-Y. (2005). Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization: Part I. Theory. Journal of the Atmospheric Sciences, 62(1), 107–124. https://doi.org/10.1175/JAS-3363.1
  36. Chun, H.-Y., Song, I.-S., Baik, J.-J., & Kim, Y.-J. (2004). Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. Journal of Climate, 17(18), 3529–3546. https://doi.org/10.1175/1520-0442(2004)017<3530:IOACFG>2.0.CO;2
  37. Song, I.-S., Chun, H.-Y., & Lane, T. P. (2003). Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. Journal of the Atmospheric Sciences, 60(16), 1960–1980. https://doi.org/10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2
  38. Chun, H.-Y., Song, I.-S., & Baik, J.-J. (1999). Some aspects of internal gravity waves in the multicell-type convective system. Meteorology and Atmospheric Physics, 69(3-4), 205–222. https://doi.org/10.1007/BF01030422